Jak na zvlněné potrubí?

Ing. Václav Pekař, CSc.
Soudní znalec v oboru ekonomika, strojírenství

Úvod

U parovodů, horkovodů a jiných potrubí s vysokou teplotou kompenzuje tuto teplotu  U-kompenzátor. Uložení potrubí
s U-kompenzátorem je většinou řešeno tak, že uprostřed mezi dvěma kompenzátory je pevný bod. V určité potřebné vzdálenosti jsou na potrubí instalovány kluzné podpěry. Nejčastěji se každá druhá opatří omezením pohybu potrubí do strany bočním vedením. U takovéto konstrukce se občas stane, že se potrubí začne vlnit. Zvlnění do tvaru plazícího se hada vznikne za určitých podmínek spíše u potrubí menších průměrů. Kdy, jak a proč vzniká toto zvlnění? Jak zabránit vzniku vlnění? Těmito problémy se zabývá náš článek.
Pokračování textu Jak na zvlněné potrubí?

Základní pojmy inženýrství, které pracuje s riziky

Doc. RNDr. D. Procházková, DrSc.
ČVUT v Praze, fakulta dopravní

Lidé chtějí žít v bezpečí a mít zajištěn potenciál pro rozvoj. Proto se strategické řízení každého státu, území či objektu zaměřuje na dlouhodobou udržitelnost, a na základě poznání to provádí zacílenou prací s riziky všeho druhu. Protože doposud neexistuje obecná shoda na formulaci problémů udržitelnosti veřejného blaha (blahobytu) lidské společnosti v kontextu se systémovými službami, je každé dosavadní řešení dočasné, jelikož se neustále balancuje mezi konkurujícími si zájmy a společenskými cíli (jsou-li stanoveny). Je obtížné řešit problémy rozhodování jednoznačně vzhledem k měnícímu se charakteru rozhodovacího procesu [1]. Pokračování textu Základní pojmy inženýrství, které pracuje s riziky

Jak zvládnout rizika technických děl

Doc. RNDr. Dana Procházková, DrSc.
ČVUT v Praze

Předložený článek shrnuje základní poznatky o práci s riziky z pohledu požadavků na technologická zařízení, kterými se zajišťuje pro lidi bezpečný svět s potenciálem rozvoje [1]. Velká technologická / technická díla jsou víc než jen množina technických částí zařízení a součástek; jde o soubor vzájemně propojených otevřených systémů (tzv. systém systémů – SoS), který se nachází v dynamicky proměnném světě. Jejich požadované charakteristické rysy jsou: velký rozměr; velký výkon; použití více technologií; složení se z několika autonomních částí, které mohou pracovat samostatně a být vyvíjeny nezávisle; vysoká bezpečnost, tj. funkčnost a spolehlivost i nízké ohrožení chráněných aktiv vlastních i veřejných, a to za podmínek normálních, abnormálních i kritických [2]. V dané souvislosti rozlišujeme zabezpečený systém (systém ochráněný před všemi riziky) a bezpečný systém (systém, který je zabezpečený a při svých kritických podmínkách neohrožuje sebe, ani své okolí) [2].

Pokračování textu Jak zvládnout rizika technických děl

Mechanická integrita (MI) tlakových zařízení

Ing. Jan Tomáš
TECHSEAL s.r.o.

V článku jsou popsány vize a myšlenky, které by měly posunout pohled (z hlediska bezpečnosti a spolehlivosti procesních a energetických zařízení) na správnou konstrukci a instalaci zařízení, tak i vhodný provoz s náležitou údržbou (např. bez netěsností s veškerými částmi způsobilými k jejich provozu). Program mechanické integrity bere v úvahu revize a zkoušky tlakového zařízení využívajíce postupy, které jsou uznávané a obecně přijímané jako správný stav techniky (RAGAGEP) a měla by být také zvážena vhodnost použití nově vyrobeného zařízení. Dokumentované postupy by měly být ustanoveny a zavedeny do praxe, dále pak pracovníci zajišťující integritu výrobního zařízení odpovídajícím způsobem proškoleni. Termín mechanické integrity je často spojován v souvislosti prevence ztráty kontejnmentu. Ve Spojených státech nařízení OSHA 1910.119 vyžaduje mechanickou integritu tlakových zařízení v souvislosti s jeho správnou správou jako vhodnou prevenci nebo minimalizaci následků katastrofických úniků toxických, reaktivních, hořlavých nebo výbušných chemikálií. 

Pokračování textu Mechanická integrita (MI) tlakových zařízení